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(57) ABSTRACT

A checkpoint technique associated with an out of order based
architecture of a processing device is described. An instruc-
tion may be received by its retirement unit and an identifica-
tion as to whether the instruction is associated with a specu-
lative error is performed. If the instruction is associated with
the speculative error, then a first operation may be performed
to replace state values of a first checkpoint of the processing
device with state values of a second checkpoint. If the instruc-
tion is not associated with the speculative error, then the
second checkpoint state may be updated based on the instruc-
tion.
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1
CHECKPOINTS ASSOCIATED WITH AN OUT
OF ORDER ARCHITECTURE

TECHNICAL FIELD

Embodiments described herein generally relate to process-
ing devices and, more specifically, relate to checkpoints asso-
ciated with an out of order architecture of'a processing device.

BACKGROUND

A processing device may be based on an out of order
(O0O0) architecture. An OOO-based processing device may
execute instructions in an order based on the availability of
input data rather than by the original order of the instructions
as provided by a program. By using such an OOO scheme, the
processing device may make use of instruction cycles that
would otherwise be idle while data is retrieved for the next
instruction in a program.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a computing system
that implements an at-retirement checkpoint module for pro-
viding checkpoints in accordance with some embodiments.

FIG. 2 is a block diagram illustrating an at-retirement
checkpoint module in accordance with some embodiments of
the disclosure.

FIG. 3 is a flow diagram of'a method to update a checkpoint
of'an out of order based processing device in accordance with
some embodiments.

FIG. 4 illustrates an example out of order instruction pipe-
line with instructions at various stages or phases in accor-
dance with some embodiments.

FIG. 5 illustrates a method to execute a rollback or nuke
function based on dynamic or static misspeculation of a com-
mit instruction in an out of order instruction pipeline in accor-
dance with some embodiments of the disclosure.

FIG. 6 illustrates a method to execute a rollback or nuke
function based on dynamic or static misspeculation of an
instruction that is not a commit instruction in an out of order
instruction pipeline in accordance with some embodiments of
the disclosure.

FIG. 7 illustrates a block diagram of the micro-architecture
for a processor that includes logic circuits to manage check-
points associated with an out of order instruction pipeline
according to one embodiment.

FIG. 8 is a block diagram of a computer system according
to one implementation.

FIG. 9 is a block diagram of a computer system according
to another implementation.

FIG.10is ablock diagram ofa system-on-a-chip according
to one implementation.

FIG. 11 illustrates another implementation of a block dia-
gram for a computing system.

FIG. 12 illustrates another implementation of a block dia-
gram for a computing system.

DESCRIPTION OF EMBODIMENTS

Described herein is a checkpoint technology in an out of
order architecture. In some embodiments, the checkpoint
technology may be used to improve the performance of a
processor, processing device, or a processor-based system.
For example, the checkpoint technology may be used to
improve the performance of an out of order (OOO) execution
based processor. A processor includes multiple functional
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units and memory channels. The processor may include an
at-retirement checkpoint module that includes function
blocks that may be used to update one or more checkpoints of
a processing device based on conditions associated with
instructions at an in-order retirement stage of an out of order
instruction pipeline of the processing device.

Modern microprocessor-based products, including a Sys-
tem on a Chip (SoC), clients, servers, and hardware accelera-
tors, may utilize checkpoints to implement advanced specu-
lative software optimization and/or fault tolerance. For
example, checkpoints may store a snapshot of the current
architectural state of a processing device that may be used
later to restart the execution of the processing device from a
particular previous state. The checkpoint may represent a
snapshot of the processing device’s register and memory
states that constitute its architectural state. The managing of
the checkpoints may be based on instructions processed in an
instruction pipeline. The instruction pipeline may process a
sequence of instructions. An instruction in the pipeline may
be referred to as an in-flight instruction if the instruction has
been allocated to the pipeline but not yet completed the execu-
tion and/or determined to be eligible for retirement from the
pipeline by an instruction retirement unit in a processing
device. The use of checkpoints for the in-flight instructions
may require multiple checkpoints (e.g., physical storage
inside the device that may also be referred to as checkpoint
buffers) to store a snapshot of the current sate of the process-
ing device. However, if the processing device utilizes an out
of order architecture, then the in-flight instructions in the
instruction pipeline may not impact the architectural state of
the processing device. Instead, with an out of order based
processing device, the in-flight instructions may impact the
state of the processing device only at their retirement from the
pipeline (e.g., after their execution is complete and they
become eligible for retirement). Thus, the state of in-flight
instructions in an instruction pipeline of an out of order based
processing device may be managed by its out of order based
speculation support mechanisms until their retirement and
hardware for a single checkpoint buffer may be used at retire-
ment, as opposed to hardware for multiple checkpoint buffers
that would be required for instructions in-flight. A synchro-
nization between in-flight architectural states or a sequence of
future checkpoints in the pipeline of an out of order based
processing device may be used to allow the hardware for the
single checkpoint buffer to support an unlimited number of
in-fight checkpoints. Thus, such a checkpoint technique may
result in advantageous hardware designs by simplifying cir-
cuitry needed to manage the checkpoints of an out of order
based processing device.

FIG. 1 is a block diagram illustrating a computing system
100 that implements an at-retirement checkpoint module 107
for providing and updating checkpoints associated with a
state of a processor 102 in accordance with some embodi-
ments. The computing system 100 is formed with a processor
102 that includes one or more execution units 108 to execute
an instruction (e.g., a commit instruction as described in
further detail below or an add, load, store, branch, etc. instruc-
tion) in accordance with one or more embodiments as
described herein. In short, the at-retirement checkpoint mod-
ule 107 maintains and updates checkpoints of the processor
102 based on instructions obtained via memory accesses to
the main memory 120 and/or the cache memory 104 via one
or more memory channels and the at-retirement checkpoint
module 107 coordinates or manages the updating of check-
points based on conditions associated with the instructions.
For example, instructions retrieved from the main memory
120 may be placed into an instruction pipeline of the proces-
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sor 102 and may be executed or not executed based on con-
ditions associated with the instructions. Additional details
with regard to an at-retirement checkpoint module 107 are
described in more detail below with respect to FIGS. 2-6.

Computing system 100 includes a component, such as a
processor 102, to employ execution units 108 including logic
to perform algorithms for processing data in accordance with
the embodiments described herein. System 100 is represen-
tative of processing systems based on the PENTIUM III™,
PENTIUM 4™, Xeon™, Itanium, XScale™ and/or Stron-
gARM™ microprocessors available from Intel Corporation
of Santa Clara, Calif., although other systems (including PCs
having other microprocessors, engineering workstations, set-
top boxes, and the like) may also be used. In one embodiment,
sample computing system 100 executes a version of the WIN-
DOWS™ gperating system available from Microsoft Corpo-
ration of Redmond, Wash., although other operating systems
(e.g., UNIX and Linux), embedded software, and/or graphi-
cal user interfaces may also be used. Thus, embodiments of
the present disclosure are not limited to any specific combi-
nation of hardware circuitry and software.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present disclosure can be used in
other devices such as handheld devices and embedded appli-
cations. Examples of handheld devices include, but are not
limited to, cellular phones, Internet Protocol devices, digital
cameras, personal digital assistants (PDAs), and handheld
PCs. Embedded applications may include, but are not limited
to, amicro controller, a digital signal processor (DSP), system
on a chip (SoC), network computers (NetPC), set-top boxes,
network hubs, wide area network (WAN) switches, or any
other system that can perform one or more instructions in
accordance with at least one embodiment.

In the illustrated embodiment of FIG. 1, processor 102
includes one or more execution units 108 to implement an
algorithm that is to perform at least one instruction. One
embodiment may be described in the context of a single
processor desktop or server system, but alternative embodi-
ments may be included in a multiprocessor system. System
100 may be an example of a “hub’ system architecture. The
computer system 100 includes a processor 102 to process data
signals. The processor 102, as one illustrative example,
includes a complex instruction set computer (CISC) micro-
processor, a reduced instruction set computing (RISC) micro-
processor, a very long instruction word (VLIW) micropro-
cessor, a processor implementing a combination of
instruction sets, an out of order based processor, or any other
processor device, such as a digital signal processor, for
example. The processor 102 is coupled to a processor bus 110
that transmits data signals between the processor 102 and
other components in the system 100, such as main memory
120 storing instruction, data, or any combination thereof. The
other components of the system 100 may include, but are not
limited to, a graphics accelerator, a memory controller hub, an
1/O controller hub, a wireless transceiver, a Flash BIOS, a
network controller, an audio controller, a serial expansion
port, and an I/O controller. These elements perform their
conventional functions that are well known to those familiar
with the art.

In one embodiment, the processor 102 includes a Level 1
(L1) internal cache memory 104. Depending on the architec-
ture, the processor 102 may have a single internal cache
memory or multiple levels of internal cache memories (e.g.,
L1 and L2). Other embodiments include a combination of
both internal and external caches depending on the particular
implementation and needs. Register file 106 is to store difter-
ent types of data in various registers including, but not limited

10

15

20

25

30

35

40

45

50

55

60

65

4

to, integer registers, floating point registers, vector registers,
banked registers, shadow registers, checkpoint registers, sta-
tus registers, configuration registers, and instruction pointer
registers.

Execution unit 108, including logic to perform integer and
floating point operations, also resides in the processor 102. It
should be noted that the execution unit may or may not have
a floating point unit. The processor 102, in one embodiment,
includes a microcode (ucode) ROM to store microcode,
which when executed, is to perform algorithms for certain
macroinstructions or handle complex scenarios. Here, micro-
code is potentially updateable to handle logic bugs/fixes for
processor 102.

Alternate embodiments of an execution unit 108 may also
be used in micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 100
includes a main memory 120. Main memory 120 may
include, but is not limited to, a dynamic random access
memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, or other memory
device. Main memory 120 stores instructions and/or data
represented by data signals that are to be executed by the
processor 102. The processor 102 is coupled to the main
memory 120 via a processor bus 110. A system logic chip,
such as a memory controller hub (MCH) may be coupled to
the processor bus 110 and main memory 120. An MCH can
provide a high bandwidth memory path to memory 120 for
instruction and data storage and for storage of graphics com-
mands, data and textures. The MCH can be used to direct data
signals between the processor 102, main memory 120, and
other components in the system 100 and to bridge the data
signals between processor bus 110, main memory 120, cache
memory 104, and system I/O, for example. The MCH may be
coupled to main memory 120 through a memory interface. In
some embodiments, the system logic chip can provide a
graphics port for coupling to a graphics controller through an
Accelerated Graphics Port (AGP) interconnect. The system
100 may also include an I/O controller hub (ICH). The ICH
can provide direct connections to some I/O devices via a local
1/0O bus. The local 1/0 bus is a high-speed 1/O bus for con-
necting peripherals to the main memory 120, chipset, and
processor 102. Some examples are the audio controller, firm-
ware hub (flash BIOS), wireless transceiver, data storage,
legacy 1/O controller containing user input and keyboard
interfaces, a serial expansion port such as Universal Serial
Bus (USB), and a network controller. The data storage device
can comprise a hard disk drive, a floppy disk drive, a CD-
ROM device, a flash memory device, or other mass storage
device.

For another embodiment of a system, the at-retirement
checkpoint module 107 may be used with a system on a chip.
One embodiment of a system on a chip includes a processor
and a memory. The memory for one such system is a flash
memory. The flash memory may be located on the same die as
the processor and other system components. Additionally,
other logic blocks, such as a memory controller or graphics
controller, may also be located on a system on a chip.

FIG. 2 is a block diagram illustrating an example at-retire-
ment checkpoint module 200 in accordance with some
embodiments of the disclosure. The at-retirement checkpoint
module 200 may correspond to the at-retirement checkpoint
module 107 of FIG. 1. In general, the at-retirement check-
point module 200 may include an at-retirement instruction
identifier sub-module (or function block) 210, a dynamic
misspeculation condition identifier sub-module (or function
block) 220, a static misspeculation condition identifier sub-
module (or function block) 230, a checkpoint updater sub-
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module (or function block) 240, a nuke execution sub-module
(or function block) 250, and a rollback execution sub-module
(or function block) 260. In alternative embodiments, the func-
tionality of one or more of the sub-modules may be combined
or divided. For example, a single sub-module may perform
the functionality of the at-retirement instruction identifier
sub-module 210, dynamic misspeculation condition identi-
fier sub-module 220, static misspeculation condition identi-
fier sub-module 230, checkpoint updater sub-module 240,
nuke execution sub-module 250, and rollback execution sub-
module 260. Alternatively, the functionality of each of the
sub-modules 210, 220, 230, 240, 250, and 260 may be sepa-
rated between multiple sub-modules.

As shown in FIG. 2, the at-retirement checkpoint module
200 may include an at-retirement instruction identifier sub-
module 210. The at-retirement instruction identifier sub-
module 210 may identify an instruction eligible for retire-
ment from pipeline in an instruction window of an out of
order architecture of a processing device. For example, the
at-retirement instruction identifier sub-module 210 may iden-
tify a retiring instruction as a commit instruction or identify
the instruction as not being a commit instruction (e.g., any
instructions in an ISA such as load instructions, store instruc-
tions, branch instructions, etc.). In some embodiments, an
in-flight instruction may refer to an instruction in the instruc-
tion window that has been allocated to the pipeline but has not
yet been executed or determined that the instruction will be
executed, or not yet eligible for retirement from the pipeline.
Furthermore, an instruction window may refer to a set of
instructions that may be concurrently handled in a pipeline of
an out of order processing device (e.g., a processor with
speculative out of order execution support). For example, the
instruction window may be managed by out of order execu-
tion support mechanisms such as a Reorder Buffer (ROB)
and/or a memory order buffer (MOB). Any instruction in the
instruction window may be executed out of order with respect
to its relative order in the software program code (e.g., when
input operands to a younger or later allocated instruction are
ready before those of an older or earlier allocated instruction).
In some embodiments, the instruction window may be of a
particular size and new instructions may be allocated and
enter the instruction window when another instruction has
beenretired (e.g., a determination has been made that this and
other instructions in the window were successfully executed)
and has left the instruction window. In some embodiments,
instructions may enter and leave the instruction window in
program order and an instruction may leave the instruction
window when it is the oldest instruction in the instruction
window in the program order and has been successfully com-
pleted or executed. Thus, the instruction window may be seen
as atype of window sliding along the program ordered stream
of instructions within which instructions may become pro-
cessed out of order. The state of all instructions within the
instruction window may be speculative until the instruction
has been committed or retired (e.g., the effects of the instruc-
tion execution are not applied to the architecturally visible
state of CPU until then).

Returning to FIG. 2, the at-retirement checkpoint module
200 may include a dynamic misspeculation condition identi-
fier sub-module 220 and a static misspeculation condition
identifier sub-module 230. In some embodiments, a specula-
tively processing device (e.g., a CPU with speculative execu-
tion support) may use speculative execution or speculative
instructions to reduce the cost of conditional branch instruc-
tions by using schemes that predict the execution path of a
program (e.g., based on the history of branch executions). For
example, in order to improve performance and utilization of a
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processing device, instructions may be scheduled or allocated
at a time when it has not yet been determined that the instruc-
tions will need to be executed. Such instructions may be
referred to as speculative instructions. For example, specula-
tive instructions may be based on branch prediction of a
control flow path through the program, but such speculative
instructions may or may not be executed by the processing
device. Thus, a speculation error condition may be identified
during or after the program code execution (e.g. if a predic-
tion turns out to be wrong). In some embodiments, a first
speculation error condition (e.g., dynamic misspeculation)
and a second speculation error condition (e.g., static mis-
speculation) may be identified by the dynamic misspecula-
tion condition identifier sub-module 220 and the static mis-
speculation condition identifier sub-module 230.

In some embodiments, dynamic misspeculation may be
associated with a hardware out of order pipeline of a process-
ing device, e.g., resulting from speculative functions of hard-
ware and static misspeculation may be associated with soft-
ware program code, e.g., resulting from speculative
assumptions made during the program code generation, like
those that may be produced by a dynamic binary translator
(DBT) associated with the processing device. In some
embodiments, a DBT may refer to a dynamic binary transla-
tor that receives a sequence of code or instructions and trans-
lates the code or instructions. For example, a first sequence of
instructions (e.g., x86 instructions) may be translated to a
second sequence of corresponding instructions. Thus, the
dynamic misspeculation condition identifier sub-module 220
may identify a misspeculation condition associated with an
executed instruction that has been introduced by an out of
order pipeline such as a speculative instruction along incor-
rectly predicted control flow path (e.g., an instruction that will
not be committed or retired, but may or may not be executed).
Furthermore, the static misspeculation condition identifier
sub-module 230 may identify a misspeculation associated
with a software program code such as, speculatively elimi-
nated by a dynamic binary translator control flow path in the
program code that turns out to be the correct control-flow
path. As an example, the misspeculation introduced by a
dynamic binary translator may include, but is not limited to,
an assumption of no interrupt or an exception to happen
during program code execution, while an interrupt or an
exception actually happens during the code execution. An
interrupt may refer to a signal to the processor emitted by
hardware or software indicating an event that requires imme-
diate attention. In some embodiments, an exception may refer
to anomalous or exceptional events requiring special process-
ing that may change the normal flow of program execution of
instructions.

The at-retirement checkpoint module 200 may include a
checkpoint updater sub-module 240. For example, the updat-
ing of a checkpoint may result in updating a value of the state
values stored in a checkpoint. In some embodiments, the
checkpoint updater sub-module 240 may simultaneously
update multiple values of the state values stored in a check-
point. In some embodiments, the checkpoint updater sub-
module 240 may simultaneously update all values of the state
stored in a checkpoint. In some embodiments, the latter
update of all values in a checkpoint is performed atomically
by its effect on the checkpointed state, i.e. indivisibly into an
equivalent sequence of updates of any subsets of values stored
in a checkpoint. In some embodiments, the checkpoint
updater sub-module 240 may update a checkpoint corre-
sponding to a valid non-speculative architectural state of an
out of order based processing device. For example, the check-
point updater sub-module 240 may update a pipeline alloca-
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tion state, a pipeline retirement state, and/or a last commit
state based on types of instructions and conditions of the
instructions as is discussed in further detail below. In some
embodiments, the last commit state may be a state kept in the
commit checkpoint that is equal to a retirement state at a
moment of an at-retirement execution of a last commit
instruction.

As shown in FIG. 2, the at-retirement checkpoint module
200 may include a nuke execution sub-module 250 and a
rollback execution sub-module 260. In some embodiments,
the nuke execution sub-module 250 may perform a nuke
operation. In the same or alternative embodiments, the nuke
operation may update or restore a pipeline allocation state
associated with a processing device with a chronologically
last values of a pipeline retirement state associated with the
processing device and may further flush a memory order
buffer (MOB) state and a state of an out of order pipeline
associated with the instruction window. In some embodi-
ments, a processing device execution will proceed from a
restored state by a nuke operation pipeline allocation state.
Furthermore, the rollback execution sub-module 260 may
perform a rollback operation. In the same or alternative
embodiments, the rollback operation may update the pipeline
allocation state of the processing device with values of a last
successful commit state associated with the processing
device and may further flush the MOB state and a state of an
out of order pipeline associated with the instruction window,
and a speculative state of data cache unit (S-DCU). The
speculative state of data cache units may capture memory
effects of all executed store operations, which may be vali-
dated as not affected by a dynamic misspeculation error (e.g.,
the stores that passed the out of order pipeline retirement
stage), but not yet validated as not affected by a static mis-
speculation error (e.g., the commit instruction associated in
the software program code with the stores is not executed and
retired yet by the pipeline of the processing device). In some
embodiments, the rollback operation may further update the
retirement state with a value of the last commit state. Further
details with regard to the nuke operation and the rollback
operation are disclosed in additional detail below.

FIG. 3 is a flow diagram of'a method to update a checkpoint
of'an out of order based processing device in accordance with
some embodiments. In some embodiments, the method 300
may be performed by the at-retirement checkpoint module
107 or 200. For example, the method 300 may be used by the
at-retirement checkpoint module 107 of FIG. 1 or the at-
retirement checkpoint module 200 of FIG. 2 to update or
manage a checkpointed state or allocation state or at-retire-
ment state of a processor 102. The method 300 may also be
performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software, firmware, or a combination thereof.
Alternatively, other components of the computing system 100
may perform some or all of the operations of the method 300.

As shown in FIG. 3, the method 300 may begin with the
processing logic identifying, at block 310, an instruction at
retirement. In some embodiments, the instruction may be
identified as a commit instruction. A commit instruction may
refer to an instruction that creates or updates a checkpoint. In
some embodiments, the method may also identify that the
instruction is not a commit instruction. The processing logic
may perform a first verification of the instruction (block 320).
In some embodiments, first verification may be associated
with a dynamic misspeculation detection. For example, the
first verification may be to determine whether the instruction
is associated with a dynamic misspeculation caused by an out
of order pipeline processing. The processing logic may fur-
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ther perform a second verification of the instruction (block
330). In some embodiments, second verification may be asso-
ciated with static misspeculation detection. For example, the
second verification may be to determine whether the instruc-
tion is associated with a static misspeculation caused by
binary code optimizations introduced speculatively by a
dynamic binary translator associated with a processing
device.

The method 300 may further update a checkpoint corre-
sponding to a state of a processing device based on a type of
the instruction and the results of the first verification and the
second verification of the instruction. For example, a retire-
ment state may be updated if an instruction is not associated
with a dynamic misspeculation. Furthermore, if the instruc-
tion is a commit instruction, then a last commit state may be
updated if there is no static misspeculation associated with
the commit instruction. Additional details with regard to
updating an allocation state, a retirement state, and a last
commit state are disclosed in additional detail below.

FIG. 4 illustrates an example out of order instruction pipe-
line 400 with instructions at various stages or phases in accor-
dance with some embodiments. In general, the out of order
instruction pipeline 400 may include instructions associated
with a processing device (e.g., processor 102) and/or imple-
mented by an at-retirement checkpoint module 107 of FIG. 1
or an at-retirement checkpoint module 200 of FIG. 2.

As shown in FIG. 4, the out of order instruction pipeline
400 may include a first portion 410 and a second portion 420.
In some embodiments, the first portion 410 of the out of order
instruction pipeline may correspond to its stages or a phase
relating to a dynamically speculative out of order state. Fur-
thermore, the second portion 420 of the out of order instruc-
tion pipeline 400 may correspond to its stages or a phase
relating to a statically speculative state. In some embodi-
ments, the point 430 at the start of the first portion 410 may
indicate a point where instructions have been allocated to the
out of order instruction pipeline 400. An allocation state of the
pipeline logically corresponds to the point 430. For example,
the instructions 401, 402, 403, and 404 in the first portion 410
of'the out of order instruction pipeline 400 may be allocated
after progressing through an allocation stage (e.g., point 430)
and may be referred to as in-flight instructions. Furthermore,
the point 440 may represent when an in-flight instruction
(e.g., instructions 401, 402, 403, and/or 404) becomes eli-
gible for retirement from an out of order pipeline and is being
retired (e.g., a determination that the instruction was success-
fully executed and it is the oldest not yet retired instruction in
the instruction window). A retirement state of the pipeline
logically corresponds to the point 440. Thus, the start of the
first portion 410 may be considered to be the point 430 (e.g.,
the allocation stage) and the end of the portion 410 may be
considered to be the point 440 (e.g., the retirement stage).
Furthermore, the start of the second portion 420 of the out of
order instruction pipeline 400 may be considered to be the
point 440 (e.g., the retirement stage) and the end of the portion
420 may be the point 450 which may represent a last success-
ful executed and retired commit instruction stage.

In some embodiments, each of the points 430, 440, and 450
may be associated with a checkpoint that holds correspondent
state of the pipeline. For example, a register alias table (RAT)
may be associated with each of the points 430, 440, and 450.
In some embodiments, the point 430 may be associated with
an allocation RAT (A-RAT), the point 440 may be associated
with a retirement RAT (R-RAT), and the point 450 may be
associated with a last commit RAT (C-RAT). In the same or
alternative embodiments, the register alias table may include
references or pointers to physical registers corresponding to
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logical ISA registers associated with a state of a processing
device. For example, the A-RAT may include references or
pointers to physical registers that represent an allocation
state, the R-RAT may include references or pointers to physi-
cal registers that represent a retirement state, and the C-RAT
may include references or pointers to physical registers that
represent the last committed state of a processing device,
resulting from successful execution and retirement of a com-
mit instruction. Thus, the register alias tables (RATs) may be
considered to be a mapping from logical registers to corre-
sponding physical registers.

Returning to FIG. 4, the A-RAT associated with point 430
may be updated when an instruction has been allocated to the
out of order instruction pipeline 400. For example, the A-RAT
may be updated to record a change in state of the processing
device associated with a destination register operand of an
allocating instruction, so that younger allocating instructions
can refer to the new allocation state. Furthermore, the R-RAT
associated with point 440 may be updated with a destination
register operand of an instruction, based on when the instruc-
tion in the out of order instruction pipeline 400 has been
retired. For example, the R-RAT may be updated when any of
the instructions 401, 402, 403, and 404 in the first portion 410
of the out of order pipeline 400 have been retired. For
example, the R-RAT may be updated to record a state of the
processing device after an instruction has been retired. Fur-
thermore, the C-RAT associated with point 450 may be
updated whenever a commit instruction has been retired. For
example, the C-RAT may be updated to record a state of the
processing device after a commit instruction has been
executed and retired. The C-RAT update process may be also
referred as a commit of the state to a checkpoint buffer. Thus,
in some embodiments, the C-RAT may be atomically updated
with the entire contents of the R-RAT when a commit instruc-
tion retires. Accordingly, the C-RAT may be considered a
snapshot of the R-RAT when the commit instruction has
retired.

In some embodiments, the A-RAT may be updated with the
contents of the R-RAT or the C-RAT in response to certain
conditions with instructions in the out of order instruction
pipeline 400. For example, as previously described, a nuke
operation 445 may be performed if an instruction is associ-
ated with a dynamic misspeculation. For example, if an
instruction 401, 402, 403, and/or 404 is associated with a
dynamic misspeculation, then a nuke operation 445 may be
performed to copy the contents of the R-RAT to the A-RAT,
along with other actions mentioned earlier. Thus, since the
R-RAT represents the state of the out of order instruction
pipeline 400 of the processing device whenever any instruc-
tion (e.g., either a commit instruction or not a commit instruc-
tion) has been retired, the nuke operation 445 may update the
A-RAT with the contents of the R-RAT whenever an in-flight
or not yet retired instruction is associated with a dynamic
misspeculation or a dynamic misspeculation condition is
identified for an instruction at retirement. In some embodi-
ments, the nuke operation 445 may further flush (e.g., remove
any instructions 401, 402, 403, and/or 404) from the out of
order instruction pipeline 400, as well as flush some contents
of MOB

Furthermore, if the nuke operation 445 is not performed, a
rollback operation 455 may be performed in response to
another condition associated with instructions in the out of
order instruction pipeline 400. For example, as previously
described, the rollback operation 455 may be performed if an
instruction is identified to be associated with a static mis-
speculation. For example, if an instruction 401, 402, 403,
and/or 404 is determined to not be associated with a dynamic
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misspeculation, then the nuke operation 445 may not be per-
formed to copy the contents of the R-RAT to the A-RAT.
Thus, an instruction that does not trigger the nuke operation
445 may result in the updating of the R-RAT. However, a
second determination may be made as to whether the instruc-
tion is associated with a static misspeculation. For example, if
the instruction is not associated with a static misspeculation
in the second portion 420 of the out of order instruction
pipeline 400, then the rollback operation 455 may not be
performed. Furthermore, if the instruction is not associated
with a static misspeculation, then the C-RAT may be updated
to represent a last committed state of the processing device if
the instruction is a commit instruction. However, if the
instruction is not a commit instruction, then the C-RAT may
not be updated. In some embodiments, if the instruction is
associated with a static misspeculation, then the contents of
the C-RAT may be copied to the A-RAT. Furthermore, in
some embodiments, the contents of the C-RAT may also be
copied to the R-RAT in addition to the A-RAT. Furthermore,
the instructions in the first portion 410 of the out of order
instruction pipeline 400 may be flushed, contents of MOB
may be flushed, and some contents of a speculative data cache
unit (S-DCU) of the processing device may be also flushed. In
some embodiments, the S-DCU may hold a speculative
memory state. For example, in some embodiments, check-
points of memory state may be represented by logically divid-
ing cacheable memory into two state classes referred to as
non-speculative memory state and speculative memory state.
A non-speculative state may represent the committed
memory state corresponding to the last retired commit
instruction or a checkpoint, while a speculative state may
represent the memory reads and/or updates corresponding to
retired instructions that are younger than the last retired com-
mit instruction. In some embodiments, the speculative
memory state may contain data updates corresponding to
uncommitted stores and data read by uncommitted loads. The
uncommitted loads and stores passed the retirement stage, but
may not be committed yet to the S-DCU state and are tem-
porary kept by the MOB.

As such, the out of order instruction pipeline 400 may
include a dynamically speculative out of order state or its
portion and a statically speculative state or its portion. Fur-
thermore, states corresponding to allocation, retirement, and
last commit may be updated based on conditions of the in-
flight and/or retiring instructions in the out of order pipeline
400.

FIG. 5 illustrates a method 500 to execute a rollback or
nuke function based on dynamic or static misspeculation
conditions for a commit instruction at a retirement stage in an
out of order instruction pipeline in accordance with some
embodiments of the disclosure. In general, the method 500
may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software, firmware, or a combination
thereof. In some embodiments, the method 500 may be per-
formed by the at-retirement checkpoint module 107 of FIG. 1
or the at-retirement checkpoint module 200 of FIG. 2. Alter-
natively, other components of the computing system 100 may
perform some or all of the operations of the method 500.

As shown in FIG. 5, the method 500 may begin with the
processing logic receiving a commit instruction (block 510).
For example, a commit instruction may be identified at retire-
ment stage in an out of order pipeline (e.g., at point 440 of out
of order pipeline 400). The processing logic may further
determine if one or more dynamic misspeculation conditions
have been detected (block 520). For example, the processing
logic may determine if the received commit instruction is
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associated with a dynamic misspeculation associated with the
out of order instruction pipeline. If the commit instruction is
associated with a dynamic misspeculation, then a nuke func-
tion or operation (e.g., nuke operation 445) may be performed
in response to determining that the commit instruction is
associated with the dynamic misspeculation (block 530). For
example, the nuke operation may result in the updating of an
A-RAT with the state values of an R-RAT. However, if the
processing logic does not determine that the commit instruc-
tion is associated with a dynamic misspeculation, then a
checkpoint associated with the last retired state may be
updated with an architectural state based on the commit
instruction (block 540). For example, an R-RAT may be
updated to reflect the state of the processing device after the
retirement of the commit instruction. The processing logic
may further determine if a static misspeculation has been
detected (block 550). For example, the processing logic may
determine if the received commit instruction is associated
with a static misspeculation associated with binary code opti-
mizations introduced speculatively by a dynamic binary
translator associated with a processing device and dynami-
cally detected by the out of order instruction pipeline. If the
commit instruction is associated with a static misspeculation
(e.g., an interrupt or exception associated with a dynamic
binary translator’s assumption that no interrupt or exception
will happen during the optimized code execution), then a
rollback function or operation (e.g., rollback operation 455)
may be performed in response to determining that the commit
instruction is associated with the static misspeculation (block
570). For example, the rollback operation may result in the
updating of an A-RAT and/or an R-RAT with the state values
of'a C-RAT. However, if the processing logic does not deter-
mine that the commit instruction is associated with a static
misspeculation then a checkpoint state associated with the
last committed state may be updated with an architectural
state based on the commit instruction (block 560). For
example, a C-RAT may be updated with contents of R-RAT
state to reflect the state of the processing device after the
retirement of the commit instruction that is not associated
with a dynamic misspeculation and a static misspeculation. In
some embodiments, block 540 may be bypassed (i.e., not
performed) as redundant in a case when block 550 detects the
static misspeculation condition and triggers a rollback func-
tion as specified at block 570.

FIG. 6 illustrates a method 600 to execute a rollback or
nuke function based on dynamic or static misspeculation
conditions of an instruction that is not a commit instruction at
a retirement stage in an out of order instruction pipeline in
accordance with some embodiments of the disclosure. In
general, the method 600 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software, firm-
ware, or a combination thereof. In some embodiments, the
method 600 may be performed by the at-retirement check-
point module 107 of FIG. 1 or the at-retirement checkpoint
module 200 of FIG. 2. Alternatively, other components of the
computing system 100 may perform some or all of the opera-
tions of the method 600.

As shown in FIG. 6, the method 600 may begin with the
processing logic receiving an instruction (block 610). For
example, an instruction that is not a commit instruction may
be identified at retirement in an out of order instruction pipe-
line (e.g., at point 440 of out of order instruction pipeline
400). The processing logic may further determine if one or
more dynamic misspeculation conditions have been detected
(block 620). For example, the processing logic may deter-
mine if the received instruction is associated with a dynamic
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misspeculation associated with the out of order instruction
pipeline. If the instruction is associated with a dynamic mis-
speculation, then a nuke function or operation (e.g., nuke
operation 445) may be performed in response to determining
that the instruction is associated with the dynamic misspecu-
lation (block 630). For example, the nuke operation may
result in the updating of an A-RAT with the state values of an
R-RAT. However, if the processing logic does not determine
that the instruction is associated with a dynamic misspecula-
tion, then a checkpoint associated with the last retired state
may be updated based on the instruction (block 640). For
example, an R-RAT may be updated to reflect the state of the
processing device after the retirement of the instruction. The
processing logic may further determine if a static misspecu-
lation has been detected (block 650). For example, the pro-
cessing logic may determine if the received instruction is
associated with a static misspeculation associated with binary
code optimizations introduced speculatively by a dynamic
binary translator associated with a processing device and
dynamically detected by the out of order pipeline. If the
instruction is associated with a static misspeculation (e.g., an
interrupt or exception associated with a dynamic binary trans-
lator’s assumption that no interrupt or exception will happen
during the optimized code execution), then a rollback func-
tion or operation (e.g., rollback operation 455) may be per-
formed in response to determining that the instruction is
associated with the static misspeculation (block 670). For
example, the rollback operation may result in the updating of
an A-RAT and/or an R-RAT with the state values of a C-RAT.
However, if the processing logic does not determine that the
instruction is associated with a static misspeculation then a
checkpoint state associated with the last committed state may
not be updated with an architectural state based on the instruc-
tion (block 660), as the instruction is not a commit instruction.
For example, a C-RAT may not be updated in response to
retirement of an instruction that is not a commit instruction. In
some embodiments, block 640 may be bypassed (i.e., not
performed) as redundant in a case when the processing logic,
at block 650, detects the static misspeculation condition and
triggers a rollback function as described at block 670.

FIG. 7 illustrates a block diagram of the micro-architecture
for a processor 700 that includes logic circuits to manage
checkpoints associated with an out of order architecture
according to one embodiment. The at-retirement checkpoint
module 107 and 200 may be implemented in the processor
700. In some embodiments, an instruction in accordance with
one embodiment can be implemented to operate on data ele-
ments having sizes of byte, word, doubleword, quadword,
etc., as well as data types, such as single and double precision
integer and floating point data types. In one embodiment the
in-order front end 701 is the part of the processor 700 that
fetches instructions to be executed and prepares them to be
used later in the processor pipeline.

The front end 701 may include several units. In one
embodiment, the instruction prefetcher 716 fetches instruc-
tions from memory and feeds them to an instruction decoder
718 which in turn decodes or interprets them. For example, in
one embodiment, the decoder decodes a received instruction
into one or more operations called “micro-instructions” or
“micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 730 takes decoded uops and
assembles them into program ordered sequences or traces in
the uop queue 734 for execution. When the trace cache 730
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encounters a complex instruction, the microcode ROM 732
provides the uops needed to complete the operation.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, the decoder 718
accesses the microcode ROM 732 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction decoder
718. In another embodiment, an instruction can be stored
within the microcode ROM 732 should a number of micro-
ops be needed to accomplish the operation. The trace cache
730 refers to an entry point programmable logic array (PLA)
to determine a correct micro-instruction pointer for reading
the micro-code sequences to complete one or more instruc-
tions in accordance with one embodiment from the micro-
code ROM 732. After the microcode ROM 732 finishes
sequencing micro-ops for an instruction, the front end 701 of
the machine resumes fetching micro-ops from the trace cache
730.

The out-of-order execution engine 703 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
reorder the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The register
renaming logic renames logic registers onto entries in a reg-
ister file. The allocator also allocates an entry for each uop in
one of the two uop queues, one for memory operations and
one for non-memory operations, in front of the instruction
schedulers: memory scheduler, fast scheduler 702, slow/gen-
eral floating point scheduler 704, and simple floating point
scheduler 706. The uop schedulers 702, 704, 706, determine
when a uop is ready to execute based on the readiness of their
dependent input register operand sources and the availability
of the execution resources the uops need to complete their
operation. The fast scheduler 702 of one embodiment can
schedule on each half of the main clock cycle while the other
schedulers can only schedule once per main processor clock
cycle. The schedulers arbitrate for the dispatch ports to sched-
ule vops for execution. Although not shown, the out-of-order
execution engine 703 may further include a retirement unit
where the at-retirement checkpoint module as disclosed
herein may be implemented. In some embodiments, the out-
of-order execution engine 703 and the exe block 711 may
notify the retirement unit with regard to the allocation and
completion/execution of an instruction.

Register files 708, 710, sit between the schedulers 702,
704, 706, and the execution units 712, 714, 716, 718, 710,
712, 714 in the execution block 711. There is a separate
register file 708, 710, for integer and floating point opera-
tions, respectively. Each register file 708, 710, of one embodi-
ment also includes a bypass network that can bypass or for-
ward just completed results that have not yet been written into
the register file to new dependent uops. The integer register
file 708 and the floating point register file 710 are also capable
of communicating data with the other. For one embodiment,
the integer register file 708 is split into two separate register
files, one register file for the low order 32 bits of data and a
second register file for the high order 32 bits of data. The
floating point register file 710 of one embodiment has 128 bit
wide entries because floating point instructions typically have
operands from 64 to 128 bits in width.

The execution block 711 contains the execution units 712,
714, 716, 718, 710, 712, 714, where the instructions are
actually executed. This section includes the register files 708,
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710, that store the integer and floating point data operand
values that the micro-instructions need to execute. The pro-
cessor 700 of one embodiment is comprised of a number of
execution units: address generation unit (AGU) 712, AGU
714, fast ALU 716, fast ALU 718, slow ALU 710, floating
point ALU 712, floating point move unit 714. For one
embodiment, the floating point execution blocks 712, 714,
execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALLU 712 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions involving a float-
ing point value may be handled with the floating point hard-
ware.

In one embodiment, the ALU operations go to the high-
speed AL U execution units 716, 718. The fast ALLUs 716, 718,
of'one embodiment can execute fast operations with an effec-
tive latency of half a clock cycle. For one embodiment, most
complex integer operations go to the slow ALU 710 as the
slow ALU 710 includes integer execution hardware for long
latency type of operations, such as a multiplier, shifts, flag
logic, and branch processing. Memory load/store operations
are executed by the AGUs 712, 714. For one embodiment, the
integer AL.Us 716, 718, 710, are described in the context of
performing integer operations on 64 bit data operands. In
alternative embodiments, the ALUs 716, 718, 710, can be
implemented to support a variety of data bits including 16,32,
128, 256, etc. Similarly, the floating point units 712, 714, can
be implemented to support a range of operands having bits of
various widths. For one embodiment, the floating point units
712, 714, can operate on 128 bits wide packed data operands
in conjunction with SIMD and multimedia instructions.

In one embodiment, the uops schedulers 702, 704, 706,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 700, the processor 700 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes instruc-
tions that use incorrect data. Only the dependent operations
need to be replayed and the independent ones are allowed to
complete. The schedulers and replay mechanism of one
embodiment of a processor are also designed to catch instruc-
tion sequences for text string comparison operations.

The processor 700 also includes logic to manage check-
points of an out of order architecture according to one
embodiment. In one embodiment, the execution block 711 of
processor 700 may include the checkpoint module 200, to
manage checkpoints of an out of order architecture according
to the description herein.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to iden-
tify operands. In other words, registers may be those that are
usable from the outside of the processor (from a program-
mer’s perspective). However, the registers of an embodiment
should not be limited in meaning to a particular type of
circuit. Rather, a register of an embodiment is capable of
storing and providing data, and performing the functions
described herein. The registers described herein can be imple-
mented by circuitry within a processor using any number of
different techniques, such as dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. In one embodiment, integer reg-
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isters store thirty-two bit integer data. A register file of one
embodiment also contains eight multimedia SIMD registers
for packed data.

For the discussions herein, the registers are understood to
be data registers designed to hold packed data, such as 64 bits
wide MMX™ registers (also referred to as ‘mm’ registers in
some instances) in microprocessors enabled with MMX tech-
nology from Intel Corporation of Santa Clara, Calif. These
MMX registers, available in both integer and floating point
forms, can operate with packed data elements that accompany
SIMD and SSE instructions. Similarly, 128 bits wide XMM
registers relating to SSE2, SSE3, SSE4, or beyond (referred
to generically as “SSEx”) technology can also be used to hold
such packed data operands. In one embodiment, in storing
packed data and integer data, the registers do not need to
differentiate between the two data types. In one embodiment,
integer and floating point are either contained in the same
register file or different register files. Furthermore, in one
embodiment, floating point and integer data may be stored in
different registers or the same registers.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 8, shown is a block diagram
of'a multiprocessor system 800 in accordance with an imple-
mentation. As shown in FIG. 8, multiprocessor system 800 is
a point-to-point interconnect system, and includes a first pro-
cessor 870 and a second processor 880 coupled via a point-
to-point interconnect 850. As shown in FIG. 8, each of pro-
cessors 870 and 880 may be multicore processors, including
first and second processor cores (i.e., processor cores 874a
and 8745 and processor cores 884a and 884b), although
potentially many more cores may be present in the proces-
sors. The processors each may include hybrid write mode
logics in accordance with an embodiment of the present. In
some embodiments, the at-retirement checkpoint modules
107 and 200 may be implemented in the multiprocessor sys-
tem 800. For example, the at-retirement checkpoint modules
107 and 200 may be implemented in the processor 870 and/or
the processor 880.

While shown with two processors 870, 880, it is to be
understood that the scope of the present disclosure is not so
limited. In other implementations, one or more additional
processors may be present in a given processor.

Processors 870 and 880 are shown including integrated
memory controller units 882 and 882, respectively. Processor
870 also includes as part of its bus controller units point-to-
point (P-P) interfaces 876 and 888; similarly, second proces-
sor 880 includes P-P interfaces 886 and 888. Processors 870,
880 may exchange information via a point-to-point (P-P)
interface 850 using P-P interface circuits 888, 888. As shown
in FIG. 8, IMCs 882 and 882 couple the processors to respec-
tive memories, namely a memory 832 and a memory 834,
which may be portions of main memory locally attached to
the respective processors.

Processors 870, 880 may each exchange information with
a chipset 890 via individual P-P interfaces 852, 854 using
point to point interface circuits 876, 894, 886, 898. Chipset
890 may also exchange information with a high-performance
graphics circuit 838 via a high-performance graphics inter-
face 839.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 890 may be coupled to a first bus 816 via an
interface 896. In one embodiment, first bus 816 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
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as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present disclosure is
not so limited.

As shown in FIG. 8, various [/O devices 814 may be
coupled to first bus 816, along with a bus bridge 818 which
couples first bus 816 to a second bus 820. In one embodiment,
second bus 820 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 820 including, for
example, a keyboard and/or mouse 822, communication
devices 827 and a storage unit 828 such as a disk drive or other
mass storage device which may include instructions/code and
data 830, in one embodiment. Further, an audio /O 824 may
be coupled to second bus 820. Note that other architectures
are possible. For example, instead of the point-to-point archi-
tecture of FIG. 8, a system may implement a multi-drop bus or
other such architecture.

Referring now to FIG. 9, shown is a block diagram of a
third system 900 in accordance with an embodiment of the
present disclosure. Like elements in FIGS. 8 and 9 bear like
reference numerals, and certain aspects of FIG. 8 have been
omitted from FIG. 9 in order to avoid obscuring other aspects
of FIG. 9.

FIG. 9 illustrates that the processors 970, 980 may include
integrated memory and I/O control logic (“CL”) 972 and 982,
respectively. For at least one embodiment, the CL 972, 982
may include integrated memory controller units such as
described herein. In addition. CL 972, 982 may also include
1/O control logic. FIG. 9 illustrates that the memories 932,
934 are coupled to the CL. 972, 982, and that 1/O devices 915
are also coupled to the control logic 972, 982. Legacy 1/O
devices 915 are coupled to the chipset 990. In some embodi-
ments, the at-retirement checkpoint modules 107 and 200
may be implemented in the system 900. For example, the
at-retirement checkpoint modules 107 and 200 may be imple-
mented in the processor 970 and/or the processor 980.

FIG. 10 is an exemplary system on a chip (SoC) that may
include one or more of the cores 1002. Other system designs
and configurations known in the arts for laptops, desktops,
handheld PCs, personal digital assistants, engineering work-
stations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs),
graphics devices, video game devices, set-top boxes, micro
controllers, cell phones, portable media players, hand held
devices, and various other electronic devices, are also suit-
able. In general, a huge variety of systems or electronic
devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.

Referring now to FIG. 10, shown is a block diagram of a
SoC 1000 in accordance with an embodiment of the present
disclosure. Similar elements in FIG. 5 bear like reference
numerals. Also, dashed lined boxes are features on more
advanced SoCs. In FIG. 10, an interconnect unit(s) 1002 is
coupled to: an application processor 1010 which includes a
set of one or more cores 1002A-N and shared cache unit(s)
1006; a system agent unit 1010; a bus controller unit(s) 1016;
an integrated memory controller unit(s) 1014; a set or one or
more media processors 1020 which may include integrated
graphics logic 1008, an image processor 1024 for providing
still and/or video camera functionality, an audio processor
1026 for providing hardware audio acceleration, and a video
processor 1028 for providing video encode/decode accelera-
tion; a static random access memory (SRAM) unit 1030; a
direct memory access (DMA) unit 1032; and a display unit
1040 for coupling to one or more external displays. In some
embodiments, the at-retirement checkpoint modules 107 and
200 may be implemented in the SoC 1000. For example, the
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at-retirement checkpoint modules 107 and 200 may be imple-
mented in the application processor 1010 and/or cores
1002A-N.

Turning next to FIG. 11, an embodiment of a system on-
chip (SOC) design in accordance with embodiments of the
disclosure is depicted. As an illustrative example, SOC 1100
is included in user equipment (UE). In one embodiment, UE
refers to any device to be used by an end-user to communi-
cate, such as ahand-held phone, smartphone, tablet, ultra-thin
notebook, notebook with broadband adapter, or any other
similar communication device. A UE may connect to a base
station or node, which can correspond in nature to a mobile
station (MS) in a GSM network. In some embodiments, the
at-retirement checkpoint modules 107 and 200 may be imple-
mented in the SCC 1100. For example, the at-retirement
checkpoint modules 107 and 200 may be implemented in the
core 1106 and/or core 1107.

Here, SOC 1100 includes two cores—1106 and 1107.
Similar to the discussion above, cores 1106 and 1107 may
conform to an Instruction Set Architecture, such as a proces-
sor having the Intel® Architecture Core™, an Advanced
Micro Devices, Inc. (AMD) processor, a MIPS-based proces-
sor, an ARM-based processor design, or a customer thereof,
as well as their licensees or adopters. Cores 1106 and 1107 are
coupled to cache control 1108 that is associated with bus
interface unit 1109 and [.2 cache 1110 to communicate with
other parts of system 1100. Interconnect 1111 includes an
on-chip interconnect, such as an IOSF, AMBA, or other inter-
connects discussed above, which can implement one or more
aspects of the described disclosure.

Interconnect 1111 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot ROM 1135 to
hold boot code for execution by cores 1106 and 1107 to
initialize and boot SOC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
controller 1145 to interface with non-volatile memory (e.g.
Flash 1165), a peripheral control 1150 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1120
and Video interface 1125 to display and receive input (e.g.
touch enabled input), GPU 1115 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the embodiments described herein.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 1170, 3G modem 1175,
GPS 1180, and Wi-Fi 1185. Note as stated above, a UE
includes a radio for communication. As a result, these periph-
eral communication modules may not all be included. How-
ever, in a UE some form of a radio for external communica-
tion should be included.

FIG. 12 illustrates a diagrammatic representation of a
machine in the example form of a computing system 1200
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver oraclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
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taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The computing system 1200 includes a processing device
1202, main memory 1204 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 1206 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 1218, which communicate with each other via a
bus 1230. In some embodiments, the at-retirement check-
point modules 107 and 200 may be implemented in the sys-
tem 1200. For example, the at-retirement checkpoint modules
107 and 200 may be implemented in the processing device
1202 and/or be stored in the instructions 1226.

Processing device 1202 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 1202 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. In one embodiment, processing device 1202 may
include one or processing cores. The processing device 1202
is configured to execute the processing logic 1226 for per-
forming the operations discussed herein. In one embodiment,
processing device 1202 can be part of the computing system
100 of FIG. 1. Alternatively, the computing system 1200 can
include other components as described herein. It should be
understood that the core may support multithreading (execut-
ing two or more parallel sets of operations or threads), and
may do so in a variety of ways including time sliced multi-
threading, simultaneous multithreading (where a single
physical core provides a logical core for each of the threads
that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding
and simultaneous multithreading thereafter such as in the
Intel® Hyperthreading technology).

The computing system 1200 may further include a network
interface device 1208 communicably coupled to a network
1220. The computing system 1200 also may include a video
display unit 1210 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 1212
(e.g., a keyboard), a cursor control device 1214 (e.g., a
mouse), a signal generation device 1216 (e.g., a speaker), or
other peripheral devices. Furthermore, computing system
1200 may include a graphics processing unit 1222, a video
processing unit 1228 and an audio processing unit 1232. In
another embodiment, the computing system 1200 may
include a chipset (not illustrated), which refers to a group of
integrated circuits, or chips, that are designed to work with the
processing device 1202 and controls communications
between the processing device 1202 and external devices. For
example, the chipset may be a set of chips on a motherboard
that links the processing device 1202 to very high-speed
devices, such as main memory 1204 and graphic controllers,
as well as linking the processing device 1202 to lower-speed
peripheral buses of peripherals, such as USB, PCI or ISA
buses.

The data storage device 1218 may include a computer-
readable storage medium 1224 on which is stored software



US 9,256,497 B2

19

1226 embodying any one or more of the methodologies of
functions described herein. The software 1226 may also
reside, completely or at least partially, within the main
memory 1204 as instructions 1226 and/or within the process-
ing device 1202 as processing logic 1226 during execution
thereof by the computing system 1200; the main memory
1204 and the processing device 1202 also constituting com-
puter-readable storage media.

The computer-readable storage medium 1224 may also be
used to store instructions 1226 utilizing the processing device
1202, such as described with respect to FIG. 1, and/or a
software library containing methods that call the above appli-
cations. While the computer-readable storage medium 1224
is shown in an example embodiment to be a single medium,
the term “computer-readable storage medium” should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing, encod-
ing or carrying a set of instruction for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present embodiments. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, and optical and magnetic media.

The following examples pertain to further embodiments.

Example 1 is a processor comprising a memory, a memory
channel coupled to the memory, and an at-retirement check-
point module coupled to the memory through the memory
channel. The at-retirement checkpoint module is operable to
receive an instruction, identify if the instruction is associated
with a first type of speculative error or is not associated with
the firsttype of speculative error, and perform a first operation
ifthe instruction is associated with the first type of speculative
error. The first operation replaces a state of a first checkpoint
of the processor with a state of a second checkpoint of the
processor. Furthermore, the at-retirement checkpoint module
is operate to update the second checkpoint based on the
instruction if the instruction is not associated with the first
type of speculative error.

In Example 2, the at-retirement checkpoint module of
Example 1 is further operable to identify if the instruction is
associated with a second type of speculative error or is not
associated with the second type of speculative error and per-
form a second operation if the instruction is associated with
the second type of speculative error. The second operation
replaces the state of the first checkpoint and the state of the
second checkpoint with a state of a third checkpoint.

In Example 3, in the processor of any of Examples 1-2, the
at-retirement checkpoint module is further operable to iden-
tify a type of the instruction and update the state of the third
checkpoint with the state of the second checkpoint based on
the instruction if the instruction is not associated with the
second type of speculative error and the type of the instruction
is a commit instruction.

In Example 4, in the processor any of Examples 1-3, the
first checkpoint is associated with state values based on a last
instruction that has been allocated, the second checkpoint is
associated with state values based on a last instruction that has
been retired, and the third checkpoint is associated with state
values based on a last commit instruction that has been
retired.

In Example 5, in the processor of any of Examples 1-4, the
first speculative error is a dynamic misspeculation caused by
an out of order instruction pipeline of the processor and the
second type of error is a static misspeculation caused by
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speculative code optimizations introduced by a dynamic
binary translator associated with the processor.

In Example 6, in the processor of any of Examples 1-5, the
first, second, and third checkpoints represent register and
memory states of the processor.

In Example 7, in the processor of any of Examples 1-6, the
replacing of the state of the first checkpoint of the processor
with the state of the second checkpoint of the processor com-
prises copying a first register alias table (RAT) associated
with second checkpoint to a second RAT associated with the
first checkpoint.

In Example 8, in the processor of any of Examples 1-7, the
first operation further flushes an instruction pipeline of the
processor and at least a portion of the contents of a memory
ordering buffer (MOB), and the second operation flushes the
instruction pipeline of the process and at least a portion of the
contents of the MOB and a speculative data cache unit (DCU)
state.

In Example 9, in the processor of any of Examples 1-8, the
third checkpoint is implemented by a single hardware buffer
for an arbitrary number of commit instructions in-flight in a
pipeline associated with the processor.

In Example 10, a method comprises receiving, by an at-
retirement checkpoint module of a processor, an instruction,
identifying, by the at-retirement checkpoint module, if the
instruction is associated with a first type of speculative error
or is not associated with the first type of speculative error, and
performing, by the at-retirement checkpoint module, a first
operation if the instruction is associated with the first type of
speculative error. The first operation replaces a state of a first
checkpoint of the processor with a state v of a second check-
point of the processor. The method further comprises updat-
ing, by the at-retirement checkpoint module, the second
checkpoint based on the instruction if the instruction is not
associated with the first type of speculative error.

In Example 11, in the method of Example 10, the method
further comprises identifying, by the at-retirement check-
point module, if the instruction is associated with a second
type of speculative error or is not associated with the second
type of speculative error and performing, by the at-retirement
checkpoint module, a second operation if the instruction is
associated with the second type of speculative error. The
second operation replaces the state of the first checkpoint and
the state of the second checkpoint with a state of a third
checkpoint.

In Example 12, in the method of any of Examples 10-11,
the method further comprises identifying a type of the
instruction and updating the state of the third checkpoint with
the state of the second checkpoint based on the instruction if
the instruction is not associated with the second type of specu-
lative error and the type of the instruction is a commit instruc-
tion.

In Example 13, in the method of any of Examples 10-12,
the first checkpoint is associated with state values based on a
lastinstruction that has been allocated, the second checkpoint
is associated with state values based on a last instruction that
has been retired, and the third checkpoint is associated with
state values based on a last commit instruction that has been
retired.

In Example 14, in the method of any of Examples 10-13,
the first speculative error is a dynamic misspeculation caused
by an out of order instruction pipeline of the processor and the
second type of error is a static misspeculation caused by
speculative code optimizations introduced by a dynamic
binary translator associated with the processor.
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In Example 15, in the method of any of Examples 10-14,
the first, second, and third checkpoints represent register and
memory states of the processor.

In Example 16, in the method of any of Examples 10-15,
the replacing of the state of the first checkpoint of the proces-
sor with the state of the second checkpoint of the processor
comprises copying a first register alias table (RAT) associated
with the second checkpoint to a second RAT associated with
the first checkpoint.

In Example 17, in the method of any of Examples 10-16,
the first operation further flushes an instruction pipeline of the
processor and at least a portion of the contents of a memory
ordering buffer (MOB), and the second operation flushes the
instruction pipeline of the processor and at least a portion of
the contents of the MOB and a speculative DCU state.

In Example 18, in the method of any of Examples 10-17,
the third checkpoint is implemented by a single hardware
buffer for an arbitrary number of commit instructions in-flight
in a pipeline associated with the processor.

Various embodiments may have different combinations of
the structural features described above. For instance, all
optional features of the processors and methods described
above may also be implemented with a processor described
herein and specifics in the examples may be used anywhere in
one or more embodiments.

Example 19 is an integrated circuit comprising a processor
core and an at-retirement checkpoint module associated with
the processor core and to identify an instruction in an out of
order instruction pipeline of the processor core, determine if
the instruction is associated with a first type of speculative
error associated with the out of order instruction pipeline or is
not associated with the first type of speculative error associ-
ated with the out of order instruction pipeline, and perform a
nuke operation if the instruction is associated with the first
type of speculative error. The nuke operation replaces a state
of a first checkpoint of the processor with a state of a second
checkpoint of the processor. The at-retirement checkpoint
module may further update the second checkpoint based on
the instruction if the instruction is not associated with the first
type of speculative error.

In Example 20, in the integrated circuit of Example 19, the
at-retirement checkpoint module is further to identify if the
instruction is associated with a second type of speculative
error or is not associated with the second type of speculative
error and perform a rollback operation if the instruction is
associated with the second type of speculative error. The
rollback operation replaces the state of the first checkpoint
and the state of the second checkpoint with a state of a third
checkpoint.

In Example 21, in the integrated circuit of any of Examples
19-20, the at-retirement checkpoint module is further to iden-
tify a type of the instruction and update the state of the third
checkpoint with the state of a second checkpoint based on the
instruction if the instruction is not associated with the second
type of speculative error and the type of the instruction is a
commit instruction.

In Example 22, in the integrated circuit of any of Examples
19-21, the first checkpoint is associated with a state based on
a last instruction that has been allocated, the second check-
point is associated with a state based on a last instruction that
has been retired, and the third checkpoint is associated with a
state based on a last commit instruction that has been retired.

In Example 23, in the integrated circuit of any of Examples
19-22, the first speculative error is a dynamic misspeculation
caused by the out of order instruction pipeline of the proces-
sor and the second type of error is a static misspeculation
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caused by speculative code optimizations introduced to
executing code by a dynamic binary translator associated
with the processor.

Various embodiments may have different combinations of
the operational features described above. For instance, all
optional features of the method described above may also be
implemented with respect to a non-transitory computer-read-
able storage medium. Specifics in the examples may be used
anywhere in one or more embodiments.

Example 24 is a non-transitory computer-readable storage
medium including instructions that, when executed by a pro-
cessor, cause the processor to perform the method of
Examples 10-18.

Example 25 is a system comprising a system on a chip
(SOC) that comprises a plurality of functional units and a
memory controller unit (MCU) coupled to the plurality of
functional units. The MCU comprises an at-retirement check-
point module to identify an instruction in an out of order
instruction pipeline of a processor core of the SOC, determine
if the instruction is associated with a first type of speculative
error associated with the out of order instruction pipeline or is
not associated with the first type of speculative error associ-
ated with the out of order instruction pipeline, and perform a
nuke operation if the instruction is associated with the first
type of speculative error. The nuke operation replaces a state
of a first checkpoint of the processor with a state of a second
checkpoint of the processor. The at-retirement checkpoint
module may further update the second checkpoint based on
the instruction if the instruction is not associated with the first
type of speculative error.

In Example 26, the SOC of Example 25 further comprises
the subject matter of Examples 1-9.

In Example 27, in the SOC of Example 25, the at-retire-
ment checkpoint module is further operable to perform the
subject matter of Examples 10-18.

In Example 28, the SOC of Example 25 further comprises
subject matter of Examples 19-23.

Example 29 is an apparatus comprising means for identi-
fying an instruction in an out of order instruction pipeline of
a processor core, means for determining if the instruction is
associated with a first type of speculative error associated
with the out of order instruction pipeline or is not associated
with the first type of speculative error associated with the out
of order instruction pipeline, and means for performing a
nuke operation if the instruction is associated with the first
type of speculative error. The nuke operation replaces a state
of a first checkpoint of the processor with a state of a second
checkpoint of the processor. The apparatus further includes
means for updating the second checkpoint based on the
instruction if the instruction is not associated with the first
type of speculative error.

In Example 30, the apparatus of Example 29 further com-
prises the subject matter of any of Examples 1-9 and 20-23.

Example 31 is an apparatus comprising an at-retirement
checkpoint module, where the at-retirement checkpoint mod-
ule is configured to perform the method of any of Examples
10-18.

In Example 32, the apparatus of Example 31 further com-
prises the subject matter of any of Examples 1-9 and 19-28.

Example 33 is a non-transitory machine-readable storage
medium including instructions that, when accessed by a pro-
cessing device, cause the processing device to perform opera-
tions comprising receiving an instruction, identifying if the
instruction is associated with a first type of speculative error
or is not associated with the first type of speculative error, and
performing a first operation if the instruction is associated
with the first type of speculative error. The first operation is to
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replace a state of a first checkpoint of the processor with a
state of a second checkpoint of the processor. The operations
may further include updating the second checkpoint based on
the instruction if the instruction is not associated with the first
type of speculative error.

In Example 34, in the non-transitory machine-readable
storage medium of Example 33, the operations further com-
prise the subject matter of any of Examples 11-18.

While the present disclosure has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present disclosure.

In the description herein, numerous specific details are set
forth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific proces-
sor pipeline stages and operation etc. in order to provide a
thorough understanding of the present disclosure. It will be
apparent, however, to one skilled in the art that these specific
details need not be employed to practice the present disclo-
sure. In other instances, well known components or methods,
such as specific and alternative processor architectures, spe-
cific logic circuits/code for described algorithms, specific
firmware code, specific interconnect operation, specific logic
configurations, specific manufacturing techniques and mate-
rials, specific compiler implementations, specific expression
of algorithms in code, specific power down and gating tech-
niques/logic and other specific operational details of com-
puter system have not been described in detail in order to
avoid unnecessarily obscuring the present disclosure.

The embodiments are described with reference to cache
memory data compression and decompression in specific
integrated circuits, such as in computing platforms or micro-
processors. The embodiments may also be applicable to other
types of integrated circuits and programmable logic devices.
For example, the disclosed embodiments are not limited to
desktop computer systems or portable computers, such as the
Intel® Ultrabooks™ computers. And may be also used in
other devices, such as handheld devices, tablets, other thin
notebooks, systems on a chip (SOC) devices, and embedded
applications. Some examples of handheld devices include
cellular phones, Internet protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications typically include a microcontroller, a
digital signal processor (DSP), a system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can per-
form the functions and operations taught below. It is
described that the system can be any kind of computer or
embedded system. The disclosed embodiments may espe-
cially be used for low-end devices, like wearable devices
(e.g., watches), electronic implants, sensory and control
infrastructure devices, controllers, supervisory control and
data acquisition (SCADA) systems, or the like. Moreover, the
apparatuses, methods, and systems described herein are not
limited to physical computing devices, but may also relate to
software optimizations for energy conservation and effi-
ciency. As will become readily apparent in the description
below, the embodiments of methods, apparatuses, and sys-
tems described herein (whether in reference to hardware,
firmware, software, or a combination thereof) are vital to a
‘green technology’ future balanced with performance consid-
erations.
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Although the embodiments herein are described with ref-
erence to a processor, other embodiments are applicable to
other types of integrated circuits and logic devices. Similar
techniques and teachings of embodiments of the present dis-
closure can be applied to other types of circuits or semicon-
ductor devices that can benefit from higher pipeline through-
put and improved performance. The teachings of
embodiments of the present disclosure are applicable to any
processor or machine that performs data manipulations.
However, the present disclosure is not limited to processors or
machines that perform 512 bit, 256 bit, 128 bit, and 64 bit, 32
bit, or 16 bit data operations and can be applied to any pro-
cessor and machine in which manipulation or management of
datais performed. In addition, the description herein provides
examples, and the accompanying drawings show various
examples for the purposes of illustration. However, these
examples should not be construed in a limiting sense as they
are merely intended to provide examples of embodiments of
the present disclosure rather than to provide an exhaustive list
of all possible implementations of embodiments of the
present disclosure.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present disclosure
can be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform functions
consistent with at least one embodiment of the disclosure. In
one embodiment, functions associated with embodiments of
the present disclosure are embodied in machine-executable
instructions. The instructions can be used to cause a general-
purpose or special-purpose processor that is programmed
with the instructions to perform the steps of the present dis-
closure. Embodiments of the present disclosure may be pro-
vided as a computer program product or software which may
include a machine or computer-readable medium having
stored thereon instructions which may be used to program a
computer (or other electronic devices) to perform one or more
operations according to embodiments of the present disclo-
sure. Alternatively, operations of embodiments of the present
disclosure might be performed by specific hardware compo-
nents that contain fixed-function logic for performing the
operations, or by any combination of programmed computer
components and fixed-function hardware components.

Instructions used to program logic to perform embodi-
ments of the disclosure can be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer).
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A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is useful
in simulations, the hardware may be represented using a
hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present disclo-
sure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be
executed by the micro-controller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if'it
is designed, coupled, and/or interconnected to perform said
designated task. As a purely illustrative example, a logic gate
may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock. Note
once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent state
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the apparatus, hardware, and/or element is designed to per-
form a particular task when the apparatus, hardware, and/or
element is operating.

Furthermore, use of the phrases ‘to,” “‘capable of/to,” and or
‘operable to,” in one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
of'a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values is
also referred to as 1°s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
Orefers to alow logic level. In one embodiment, a storage cell,
such as a transistor or flash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations of values in computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 1010 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held in a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes a
low logical value, i.e. set. Note that any combination of values
may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via instruc-
tions or code stored on a machine-accessible, machine read-
able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, infrared signals, digital signals);
etc., which are to be distinguished from the non-transitory
mediums that may receive information there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
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PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer)

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the disclosure as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers or the like. The blocks described herein can be
hardware, software, firmware or a combination thereof.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such

as “defining,” “receiving,” “determining,” “issuing,” “link-
ing,” “associating,” “obtaining,” “authenticating,” “prohibit-
ing,” “executing,” “requesting,” “communicating,” or the

like, refer to the actions and processes of a computing system,
or similar electronic computing device, that manipulates and
transforms data represented as physical (e.g., electronic)
quantities within the computing system’s registers and
memories into other data similarly represented as physical
quantities within the computing system memories or registers
or other such information storage, transmission or display
devices.

The words “example” or “exemplary” are used herein to
mean serving as an example, instance or illustration. Any
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aspect or design described herein as “example” or “exem-
plary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of the
words “example” or “exemplary” is intended to present con-
cepts in a concrete fashion. As used in this application, the
term “or” is intended to mean an inclusive “or” rather than an
exclusive “or.”” That is, unless specified otherwise, or clear
from context, “X includes A or B” is intended to mean any of
the natural inclusive permutations. That is, if X includes A; X
includes B; or X includes both A and B, then “X includes A or
B” is satisfied under any of the foregoing instances. In addi-
tion, the articles “a” and “an” as used in this application and
the appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from con-
text to be directed to a singular form. Moreover, use of the
term “an embodiment” or “one embodiment” or “an imple-
mentation” or “one implementation” throughout is not
intended to mean the same embodiment or implementation
unless described as such. Also, the terms “first,” “second,”
“third,” “fourth,” etc. as used herein are meant as labels to
distinguish among different elements and may not necessar-
ily have an ordinal meaning according to their numerical
designation.

What is claimed is:

1. A processor comprising:

a memory;

a memory channel coupled to the memory; and

an at-retirement checkpoint module, coupled to the

memory through the memory channel, to:

receive an instruction;

identify if the instruction is associated with a first type of
speculative error or is not associated with the first type
of speculative error;

perform a first operation if the instruction is associated
with the first type of speculative error, wherein the
first operation is to replace a state of a first checkpoint
of'the processor with a state of a second checkpoint of
the processor; and

update the second checkpoint based on the instruction if
the instruction is not associated with the first type of
speculative error.

2. The processor of claim 1, wherein the at-retirement
checkpoint module is further to:

identify if the instruction is associated with a second type

of speculative error or is not associated with the second
type of speculative error; and

perform a second operation if the instruction is associated

with the second type of speculative error, wherein the
second operation is to replace the state of the first check-
point and the state of the second checkpoint with a state
of a third checkpoint.

3. The processor of claim 2, wherein the at-retirement
checkpoint module is further to:

identify a type of the instruction; and

update the state of the third checkpoint with the state of the

second checkpoint based on the instruction if the
instruction is not associated with the second type of
speculative error and the type of the instruction is a
commit instruction.

4. The processor of claim 3, wherein the first checkpoint is
associated with state values based on a last instruction that has
been allocated, the second checkpoint is associated with state
values based on a last instruction that has been retired, and the
third checkpoint is associated with state values based on a last
commit instruction that has been retired.

5. The processor of claim 2, wherein the first speculative
error is a dynamic misspeculation caused by an out of order
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instruction pipeline of the processor and the second type of
error is a static misspeculation caused by speculative code
optimizations introduced by a dynamic binary translator
associated with the processor.

6. The processor of claim 2, wherein the first, second, and
third checkpoints represent register and memory states of the
processor.

7. The processor of claim 1, wherein the replacing of the
state of the first checkpoint of the processor with the state of
the second checkpoint of the processor comprises copying a
first register alias table (RAT) associated with second check-
point to a second RAT associated with the first checkpoint.

8. The processor of claim 2, wherein the first operation is
further to flush an instruction pipeline of the processor and at
least a portion of the contents of a memory ordering buffer
(MOB), and wherein the second operation is to flush the
instruction pipeline of the process and at least a portion of the
contents of the MOB and at least a portion of a speculative
data cache unit (DCU) state.

9. The processor of claim 2, wherein the third checkpoint is
implemented by a single hardware buffer for an arbitrary
number of commit instructions in-flight in a pipeline associ-
ated with the processor.

10. A method comprising:

receiving, by an at-retirement checkpoint module of a pro-

cessor, an instruction;

identifying, by the at-retirement checkpoint module, if the

instruction is associated with a first type of speculative
error or is not associated with the first type of speculative
error;

performing, by the at-retirement checkpoint module, a first

operation if the instruction is associated with the first
type of speculative error, wherein the first operation is to
replace a state of a first checkpoint of the processor with
a state of a second checkpoint of the processor; and
updating, by the at-retirement checkpoint module, the sec-
ond checkpoint based on the instruction if the instruction
is not associated with the first type of speculative error.

11. The method of claim 10, further comprising:

identifying, by the at-retirement checkpoint module, if the

instruction is associated with a second type of specula-
tive error or is not associated with the second type of
speculative error; and

performing, by the at-retirement checkpoint module, a sec-

ond operation if the instruction is associated with the
second type of speculative error, wherein the second
operation is to replace the state of the first checkpoint
and the state of the second checkpoint with a state of a
third checkpoint.

12. The method of claim 11, further comprising:

identifying a type of the instruction; and

updating the state of the third checkpoint with the state of

the second checkpoint based on the instruction if the
instruction is not associated with the second type of
speculative error and the type of the instruction is a
commit instruction.

13. The method of claim 12, wherein the first checkpoint is
associated with state values based on a last instruction that has
been allocated, the second checkpoint is associated with state
values based on a last instruction that has been retired, and the
third checkpoint is associated with state values based on a last
commit instruction that has been retired.

14. The method of claim 11, wherein the first speculative
error is a dynamic misspeculation caused by an out of order
instruction pipeline of the processor and the second type of
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error is a static misspeculation caused by speculative code
optimizations introduced by a dynamic binary translator
associated with the processor.

15. The method of claim 11, wherein the first, second, and
third checkpoints represent register and memory states of the
processor.

16. The method of claim 10, wherein the replacing of the
state of the first checkpoint of the processor with the state of
the second checkpoint of the processor comprises copying a
first register alias table (RAT) associated with the second
checkpoint to a second RAT associated with the first check-
point.

17. The method of claim 11, wherein the first operation is
further to flush an instruction pipeline of the processor and at
least a portion of the contents of a memory ordering buffer
(MOB), and wherein the second operation is to flush the
instruction pipeline of the process and at least a portion of the
contents of the MOB and at least a portion of a speculative
data cache unit (DCU) state.

18. The method of claim 11, wherein the third checkpoint
is implemented by a single hardware buffer for an arbitrary
number of commit instructions in-flight in a pipeline associ-
ated with the processor.

19. An integrated circuit comprising:

a processor core;

an at-retirement checkpoint module associated with the

processor core and to:

identify an instruction in an out of order instruction
pipeline of the processor core;

determine if the instruction is associated with a first type
of speculative error associated with the out of order
instruction pipeline or is not associated with the first
type of speculative error associated with the out of
order instruction pipeline;

perform a nuke operation if the instruction is associated
with the first type of speculative error, wherein the
nuke operation is to replace a state of a first check-
point of the processor with a state of a second check-
point of the processor; and

update the second checkpoint based on the instruction if
the instruction is not associated with the first type of
speculative error.

20. The integrated circuit of claim 19, wherein the at-
retirement checkpoint module is further to:

identify if the instruction is associated with a second type

of speculative error or is not associated with the second
type of speculative error; and

perform a rollback operation if the instruction is associated

with the second type of speculative error, wherein the
rollback operation is to replace the state of the first
checkpoint and the state of the second checkpoint with a
state of a third checkpoint.

21. The integrated circuit of claim 20, wherein the at-
retirement checkpoint module is further to:

identify a type of the instruction; and

update the state of the third checkpoint with the state of a

second checkpoint based on the instruction if the
instruction is not associated with the second type of
speculative error and the type of the instruction is a
commit instruction.

22. The integrated circuit of claim 21, wherein the first
checkpoint is associated with a state based on a last instruc-
tion that has been allocated, the second checkpoint is associ-
ated with a state based on a last instruction that has been
retired, and the third checkpoint is associated with a state
based on a last commit instruction that has been retired.
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23. The integrated circuit of claim 2, wherein the first
speculative error is a dynamic misspeculation caused by the
out of order instruction pipeline of the processor and the
second type of error is a static misspeculation caused by
speculative code optimizations introduced to executing code 5
by a dynamic binary translator associated with the processor.
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